Abstract

The Hammerstein models can accurately describe a wide variety of nonlinear systems (chemical process, power electronics, electrical drives, sticky control valves). Algorithms of identification depend, among other, on the assumption about the nature of stochastic disturbance. Practical research shows that disturbances, owing the presence of outliers, have a non-Gaussian distribution. In such case it is a common practice to use the robust statistics. In the paper, by analysis of the least favourable probability density, it is shown that the robust (Huber`s) estimation criterion can be presented as a sum of non-overlapping - norm and - norm criteria. By using a Weiszfald algorithm - norm criterion is converted to - norm criterion. So, the weighted - norm criterion is obtained for the identification. The main contributions of the paper are: (i) Presentation of the Huber`s criterion as a sum of - norm and - norm criteria; (ii) Using the Weiszfald algorithm – norm criterion is converted to a weighted - norm criterion; (iii) Weighted extended least squares in which robustness is included through weighting coefficients are derived for NARMAX (nonlinear autoregressive moving average with exogenous variable) . The illustration of the behaviour of the proposed algorithm is presented through simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.