Abstract

The existing collaborative recommendation algorithms have poor robustness against shilling attacks. To address this problem, in this paper we propose a robust recommendation method based on suspicious users measurement and multidimensional trust. Firstly, we establish the relevance vector machine classifier according to the user profile features to identify and measure the suspicious users in the user rating database. Secondly, we mine the implicit trust relation among users based on the user-item rating data, and construct a reliable multidimensional trust model by integrating the user suspicion information. Finally, we combine the reliable multidimensional trust model, the neighbor model and matrix factorization model to devise a robust recommendation algorithm. The experimental results on the MovieLens dataset show that the proposed method outperforms the existing methods in terms of both recommendation accuracy and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.