Abstract
AbstractConsider a decode‐and‐forward wireless relay system assisted by an intelligent reflection surface (IRS), where a robust design on receive beamforming at the relay and reflection coefficients at the IRS is studied. The worst‐case signal‐to‐noise ratio maximization problem is formulated, subject to the reflection coefficients (with either continuous or discrete phases) constraints, under the assumption of imperfect channel state information for all channels. To cope with the hard problem, an equivalent nonconvex quadratic optimization problem with a simpler form is derived, and then the Cauchy‐Schwarz inequality is applied to update the beamforming and a cyclic process is proposed to update the reflection coefficients, where a closed‐form optimal solution is computed in each step. It turns out that the proposed algorithm achieves a locally optimal solution for the robust design problem. Simulation results show that the proposed robust design outperforms an existing non‐robust design and two robust designs via semidefinite relaxation technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.