Abstract

A robust receding horizon control (RHC) scheme is proposed for parameter-dependent linear systems with linear fractional parameter dependency and input–output constraints. The cost function is defined over a moving finite horizon as the quadratic performance for future parameter trajectories. The robust stability of the proposed RHC scheme is guaranteed using a parameter-dependent control Lyapunov function as the terminal penalty term, which is available through off-line synthesis procedure. Moreover, it is shown that the domain of attraction will be enlarged and the controlled performance of the RHC scheme will be gradually improved as the upper bound of performance is monotonically decreasing on-line. Both off-line robust control synthesis and on-line RHC computation are formulated and solved using linear matrix inequality optimisation techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.