Abstract

Combining foreground images from multiple views by projecting them onto a common ground-plane has been recently applied within many multi-object tracking approaches. These planar projections introduce severe artifacts and constrain most approaches to objects moving on a common 2D ground-plane. To overcome these limitations, we introduce the concept of an occupancy volume - exploiting the full geometry and the objects' center of mass - and develop an efficient algorithm for 3D object tracking. Individual objects are tracked using the local mass density scores within a particle filter based approach, constrained by a Voronoi partitioning between nearby trackers. Our method benefits from the geometric knowledge given by the occupancy volume to robustly extract features and train classifiers on-demand, when volumetric information becomes unreliable. We evaluate our approach on several challenging real-world scenarios including the public APIDIS dataset. Experimental evaluations demonstrate significant improvements compared to state-of-the-art methods, while achieving real-time performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.