Abstract

SummaryA robust adaptive parameter estimation method, based on the application of a full‐order filter capable of rejecting exogenous disturbances, is proposed in this article. A linear matrix inequality condition is proposed to synthesize the desired robust filter, assuming the presence of a known input control with constraints. The filter uses the output of the system to estimate the desired signal that will be employed in the adaptive estimation procedure and, to assure robustness to exogenous noise and unstructured uncertainties, the guaranteed cost is minimized in the synthesis condition. The filtered signals are then applied to an adaptive procedure to estimate the unknown system's internal parameters, which is also proposed in this article. It is shown that lower values for the guaranteed cost from the disturbance input to the error output of the filter imply more accurate estimations of the parameters. The efficiency of the proposed estimation technique is illustrated through a simulated model and a physical system has been considered to validate real‐time estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.