Abstract
To develop a Monte Carlo (MC)-based and robust ion beam therapy optimization system that separates the optimization algorithm from the relative biological effectiveness (RBE) modeling. Robustly optimized dose distributions were calculated and compared across three ion therapy beams (proton, helium, carbon). The effect of different averaging techniques in calculating RBE in mixed beams was also investigated. Ion particles were transported in TOPAS MC. The microdosimetric-kinetic model (MKM) parameter, saturation corrected specific energy (), was calculated with a customized MKM implementation in TOPAS MC. Intensity modulated ion therapy robust optimization was performed by a quasi-Newton iterative method based on dose-volume objective function. The robust optimization took setup and range uncertainties into account. In the present work, the biological dose for each individual spot was calculated, and then summed together to calculate total biological dose. In other published works, radiosensitive parameters, such as , were first averaged over all beam spots within a mixed-beam field, after which biological dose was calculated using the averaged radiosensitive parameters. The difference between the two mixed-beam biological dose calculations was quantified. Robust plans were achieved with the three particle types. The effect of averaging depended on particle type. The difference between biological doses calculated with individual and averaged may be greater than 3% for a carbon beam. MC based radiobiological and robust optimization was made flexible to incorporate dose-volume histogram constraints and to be independent of RBE models. Iterative optimization with RBE models was feasible. Evaluation of the RBE calculation for mixed beam could be necessary if better accuracy was demanded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.