Abstract

In this paper an artificial neural network (ANN) based radar target classifier is presented, and its performance is compared with that of a conventional minimum distance classifier. Radar returns from realistic aircraft are synthesized using a thin wire time domain electromagnetic code. The time varying backscattered electric field from each target is processed using both a conventional scheme and an ANN-based scheme for classification purposes. It is found that a multilayer feedforward ANN, trained using a backpropagation learning algorithm, provides a higher percentage of successful classification than the conventional scheme. The performance of the ANN is found to be particularly attractive in an environment of low signal-to-noise ratio. The performance of both methods are also compared when a preemphasis filter is used to enhance the contributions from the high frequency poles in the target response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.