Abstract

The ability to engineer high-fidelity gates on quantum processors in the presence of systematic errors remains the primary barrier to achieving quantum advantage. Quantum optimal control methods have proven effective in experimentally realizing high-fidelity gates, but they require exquisite calibration to be performant. We apply robust trajectory optimization techniques to suppress gate errors arising from system parameter uncertainty. We propose a derivative-based approach that maintains computational efficiency by using forward-mode differentiation. Additionally, the effect of depolarization on a gate is typically modeled by integrating the Lindblad master equation, which is computationally expensive. We employ a computationally efficient model and utilize time-optimal control to achieve high-fidelity gates in the presence of depolarization. We apply these techniques to a fluxonium qubit and suppress simulated gate errors due to parameter uncertainty below ${10}^{\ensuremath{-}7}$ for static parameter deviations of the order of 1%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.