Abstract

A novel quantum-inspired reinforcement learning (QiRL) algorithm is proposed for navigation control of autonomous mobile robots. The QiRL algorithm adopts a probabilistic action selection policy and a new reinforcement strategy, which are inspired, respectively, by the collapse phenomenon in quantum measurement and amplitude amplification in quantum computation. Several simulated experiments of Markovian state transition demonstrate that QiRL is more robust to learning rates and initial states than traditional reinforcement learning. The QiRL approach is then applied to navigation control of a real mobile robot, and the simulated and experimental results show the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.