Abstract

For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. From a Bayesian perspective, the image wavelet coefficients are approximately sparse and modeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, and MEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/EmoryCN2L/QSM_AMP_PE. On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.