Abstract
The poor mechanical durability and weak fouling resistance of oil/water separation membranes severely restrict their applications in industry. Herein, a robust PVA/GO@MOF membrane with fast photothermal self-cleaning capability was developed through facile chemical crosslinking and suction-filtration strategies. Attributed to the powerful underwater superoleophobicity, the PVA/GO@MOF membrane exhibited extraordinary anti-oil adhesion even for high-viscosity crude oil and continuous crude oil emulsion purification capability with stable flux (1020 L m−2 h−1 bar−1) and exceptional efficiency (> 99.3%) even after 60 min. Most importantly, in comparison to reported photocatalytic self-cleaning oil/water separation membranes, the PVA/GO@MOF membrane can degrade organic contaminants more rapidly with a higher degradation rate (99.9%) in 50 min due to the superior photothermal conversion capacity. The synergistic photothermal and photocatalytic effects significantly enhanced photodegradation efficiency, which created opportunities for in-depth treatment of complex oily wastewater. Besides, the obtained membrane displayed excellent chemical and mechanical durability with underwater oil contact angle (UWOCA) above 150° even in harsh environments, such as corrosive solutions, UV irradiation, ultrasound treatment, abrasion experiment and bending test. Therefore, the developed PVA/GO@MOF membrane with robust durability and fast photocatalytic self-cleaning property is highly expected to purify oily wastewater and degrade organic pollutants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.