Abstract
AbstractElectronic structure engineering on electrode materials could bring in a new mechanism to achieve high energy and high power densities in sodium ion batteries. Herein, we design and create Co vacancies at the interface of atomically thin CoSe2/graphene heterostructure and obtain Co1−xSe2/graphene heterostructure electrode materials that facilitate significant Na+ intercalation pseudocapacitance. Density functional theory (DFT) calculation suggests that the Na+ adsorption energy is dramatically increased, and the Na+ diffusion barrier is remarkably reduced due to the introduction of Co vacancy. The optimized electrode delivers a superior capacity of 673.6 mAh g−1 at 0.1 C, excellent rate capability of 576.5 mAh g−1 at 2.0 C and ultra‐long life up to 2000 cycles. Kinetics analysis indicates that the enhanced Na+ storage is mainly attributed to the intercalation pseudocapacitance induced by Co vacancies. This work suggests that the creation of cation vacancy could bestow heterostructured electrode materials with pseudocapacitive Na+ intercalation for high‐capacity and high‐rate energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.