Abstract
This paper compares the effectiveness of the proposed hybrid metaheuristic algorithms for a class of unstable systems with time delay to that of the existing ones. The local search and global methods of optimization are combined to yield more effective hybrid metaheuristic algorithms. These algorithms are used to tune the proportional–integral–derivative (PID) controllers, satisfying the robust stabilizing vector gain margin (VGM). Six global heuristic algorithms namely ant colony optimization (ACO), particle swarm optimization (PSO), biogeography-based optimization (BBO), population-based incremental learning (PBIL), evolution strategy (ES), and stud genetic algorithms (StudGA) are combined with the local search property of derivative free optimization methods such as simplex derivative based pattern search (SDPS) and implicit filtering (IMF) to yield hybrid metaheuristic algorithms. The efficacy of the proposed control schemes in terms of various time domain specifications and stabilizing VGM are compared with some existing methods for unstable process with time delay (UPTD) systems. The performance of the proposed control schemes particularly in the context of uncertainty in the plant is demonstrated using a case study. The efficacy of the proposed control scheme is illustrated with a nontransfer function based multibody vehicle autosteer control design problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.