Abstract

Point set registration is widely used in various fields, but because the current registration algorithms suffer from the complexities of point set distributions, it has become a challenging problem. To solve this problem, we propose a probabilistic model based on variational Bayes. Specifically, we propose to build an asymmetric generalized Gaussian mixture probability model to evaluate the correspondence between point sets and eliminate outliers, by controlling the mixing ratio of the corresponding points to deal with the missing correspondence and using intermediate variable to simulate the transition from the model point set to the target point set. We propose a local variation to speed up the accurate update of the parameters to obtain a more compact lower bound of the change. In addition, a global–local strategy constraint transfer function is proposed, and coarse-to-fine registration is achieved by simulating the degradation scheme. Experimental results show that our method has the best robustness compared with the state-of-the-art registration algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.