Abstract
In the presence of outlier s in the dataset, the principal component analysis method, like many of the classical statistical methods, is severely affected. For this reason, if there are outliers in dataset, researchers tend to use alternative methods. Use of fuzzy and robust approaches is the leading choice among these methods. In this study, a new approach to robust fuzzy principal component analysis is proposed. This approach combines the power of both robust and fuzzy methods at the same time and collects these two approaches under the framework of principal component analysis. The performance of proposed approach called robust principal component analysis based on fuzzy coded data is examined through a set of artificial dataset that are generated by considering three different scenarios and a real dataset to observe how it is affected by the increase in sample size and changes in the rate of outliers. In light of the study's findings, it is seen that the proposed approach gives better results than the ones in the classical and robust principal component analysis in the presence of outliers in dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY A - Applied Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.