Abstract

AbstractHere, a protocol for robust preparation of an atomic concatenated Greenberger–Horne–Zeilinger (C‐GHZ) state via shortcuts to adiabaticity (STA) is proposed. The devices for implementing the protocol consist of atoms, cavities, and the optical fibers, which are feasible with current technology. The atoms are trapped in the separated cavities allowing individual control over each atom with classical fields. STA helps to design Rabi frequencies of classical fields so that the atoms can be driven from the initial states to the target states. The numerical simulations show that the protocol holds robustness against atomic spontaneous emissions and photonic leakages. Thus, the protocol may be realized by experiments in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.