Abstract

This paper presents a robust predictor-based sliding mode control (RPSMC) for multirotor unmanned aerial vehicles (UAVs) to ensure desired tracking control under time delays which appear in practice by communications, complex computation, and actuator delays. Many UAV applications have difficulty in control and operation due to various types of time delays, resulting in repeated commands, severe control instability, and then mission failure. However, existing controllers have limitations in solving time delay problems. In this paper, the RPSMC with the prediction of future disturbance and reference trajectory is developed for the multirotor UAV to minimize the effects of time delay, robustly deal with external disturbances, and further achieve desired tracking control. The performance of RPSMC for the multirotor UAV is verified under various time delays and disturbances in numerical simulations. The results show the robustness and fast control convergence compared with proportional-integral-differential and conventional predictor-based controllers. Experimental results with step response and tracking of circular trajectory demonstrate the feasibility and performance of the RPSMC for UAVs in the presence of various time delays and disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call