Abstract

A direct-drive permanent magnet synchronous generator (PMSG) with a three-level neutral-point-clamped back-to-back power converter is an attractive configuration for high-power wind energy conversion systems. For such a topology, finite-control-set model-predictive control (FCS-MPC) has emerged as a promising alternative. However, due to its fully model-based concept, variation of system parameters (in particular, the stator and grid filter inductance and rotor permanent-flux linkage) will (seriously) affect the system control performances when using the classical FCS-MPC. In this work, a robust FCS-MPC method with revised predictions is proposed and validated for such a system. With the proposed solution, not only the system robustness against parameter variations is improved, but also the control variable ripples are evidently reduced. The proposed method has been implemented with a fully field-programmable-gate-array-based real-time hardware. Its performance improvements in comparison with the conventional solutions are validated with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.