Abstract

Ultrasonic motors used in high-precision mechatronics are characterized by strong frictional effects, which are among the main problems in precision motion control. The traditional methods apply model-based nonlinear feedforward to compensate the friction, thus requiring closed-loop stability and safety constraint considerations. Implementation of these methods requires computation power. This paper introduces a systematic approach using piecewise affine models to emulate the friction effect of the motor motion. The well-known model predictive control method is employed to deal with piecewise affine models. The increased complexity of the model offers a higher tracking precision on a simpler gain scheduling scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.