Abstract

In this paper, the trade-off among system sum energy consumption and robustness is studied. In this regard, a robust power allocation problem is formulated for a two-tier heterogeneous network with uplink transmission mode and consideration of imperfect channel state information. The objective is to minimize the total transmit power of femtocell users (FUs), while the interference to macrocell user receiver is limited to a predefined interference level, the transmit power of each FU transmitter is kept within their power budgets, and the actual signal-to-interference-plus-noise ratio of each femtocell receiver is above a minimum threshold. Considering the uncertainties of the interference links from FUs to macrocell base stations and forward transmission links of each FU, the robust power allocation problem is formulated as a semi-infinite programming problem (SIPP). By the worst-case approach, the SIPP is transformed into a convex optimization problem solved by the Lagrange dual decomposition method. Moreover, the feasible regions of constraints, computational complexity, and sensitivity degree of the proposed robust algorithm are also analyzed. Simulation results investigate the impact of channel uncertainties and the superiority of the proposed algorithm by comparing with non-robust algorithm.

Highlights

  • With the rapid increase of mobile data, more than 50% phone calls and 70% data services take place in indoor environment [1]

  • Femtocell enabled in macrocell networks consists of a new heterogeneous cellular network which can satisfy the requirement of the increasing wireless data services due to low-power consumption and flexible deployment of femtocell users [2]

  • We proposed a Resource power allocation (RPA) algorithm based on energy minimization for the uplink of a HetNet with one macrocell and multiple femtocells by considering all channel uncertainties

Read more

Summary

Introduction

With the rapid increase of mobile data, more than 50% phone calls and 70% data services take place in indoor environment [1]. User performance, and robustness are the three important characteristics of each cellular network (i.e., macrocell network, femtocell network) in HetNets where the trade-off between optimality and robustness should be studied To this end, by considering the channel uncertainties in SINR constraint of each FU and interference power constraint to MUs, we investigate a RPA problem in two-tier HetNets under uplink transmission mode that minimizes the total transmit power of FUs. To solve the proposed problem, we transform the problem into a convex one by using bounded ellipsoidal model and worst-case approach, the analytical solution is obtained by using Lagrange theory.

Methods
Computational complexity
Sensitivity analysis
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.