Abstract

This letter studies parallel independent Gaussian channels with uncertain eavesdropper channel state information (CSI). Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate. We bound the outage probability and obtain a linear fractional program that takes into account the uncertainty in eavesdropper CSI while allocating power on the parallel channels. Problem structure is exploited to solve this optimization problem efficiently. We find the proposed scheme effective for uncertain eavesdropper CSI in comparison with conventional power allocation schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.