Abstract
We propose a robust post-selection inference method based on the Huber loss for the regression coefficients, when the error distribution is heavy-tailed and asymmetric in a high-dimensional linear model with an intercept term. The asymptotic properties of the resulting estimators are established under mild conditions. We also extend the proposed method to accommodate heteroscedasticity assuming the error terms are symmetric and other suitable conditions. Statistical tests for low-dimensional parameters or individual coefficient in the high-dimensional linear model are also studied. Simulation studies demonstrate desirable properties of the proposed method. An application to a genomic dataset about riboflavin production rate is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.