Abstract

We propose a novel pose-invariant face recognition approach which we call Discriminant Multiple Coupled Latent Subspace framework. It finds the sets of projection directions for different poses such that the projected images of the same subject in different poses are maximally correlated in the latent space. Discriminant analysis with artificially simulated pose errors in the latent space makes it robust to small pose errors caused due to a subject’s incorrect pose estimation. We do a comparative analysis of three popular latent space learning approaches: Partial Least Squares (PLSs), Bilinear Model (BLM) and Canonical Correlational Analysis (CCA) in the proposed coupled latent subspace framework. We experimentally demonstrate that using more than two poses simultaneously with CCA results in better performance. We report state-of-the-art results for pose-invariant face recognition on CMU PIE and FERET and comparable results on MultiPIE when using only four fiducial points for alignment and intensity features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.