Abstract

We investigate a robust version of the portfolio selection problem under a risk measure based on the lower-partial moment (LPM), where uncertainty exists in the underlying distribution. We demonstrate that the problem formulations for robust portfolio selection based on the worst-case LPMs of degree 0, 1 and 2 under various structures of uncertainty can be cast as mathematically tractable optimization problems, such as linear programs, second-order cone programs or semidefinite programs. We perform extensive numerical studies using real market data to reveal important properties of several aspects of robust portfolio selection. We can conclude from our results that robustness does not necessarily imply a conservative policy and is indeed indispensable and valuable in portfolio selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.