Abstract

I analyze the optimal intertemporal portfolio problem of an investor who worries about model misspecification and insists on robust decision rules when facing a mean-reverting risk premium. The desire for robustness lowers the total equity share, but increases the proportion of the intertemporal hedging demand. I present a methodology for calculation of detection-error probabilities, which is based on Fourier inversion of the conditional characteristic functions of the Radon–Nikodym derivatives. The quantitative effect of robustness is more modest than in i.i.d. settings, because model discrimination between the benchmark and the worst-case alternative model is easier, as indicated by the detection-error probabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.