Abstract

SummaryThis paper presents a method for designing a robust two‐degree‐of‐freedom control scheme, capable of satisfying multiple model‐error specifications on a plant by plant basis. Traditional quantitative feedback theory methods generally use a single model‐error or above‐below magnitude tracking specification, which can result in overdesign for plants located away from the bounding conditions. The performance specifications are also generally hand‐tuned, or iteratively adjusted to keep the underlying time‐domain signals within permissible levels. Our method aims to perform a model‐error design on a per‐plant basis, such that each plant's corresponding model tracking has equal weighting given the plant's inherent feedback requirements and capability. The quantitative feedback theory method allows this per‐plant approach to be undertaken with ease. Additionally, sufficiently low‐order model specifications are designed using simple optimisation, which take into account performance limiting effects, such as non‐minimum phase behaviour and signal constraints. A worked example is presented, showing the viability and transparency of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call