Abstract

In this work, we propose a robust planning tool that allocates power statically in homogeneous and heterogeneous cellular networks with non-regular base station (BTS) placement, to mitigate interference and improve overall performance. Each BTS will use the total available spectrum, but it will divide it into multiple sub-bands, and each BTS will transmit with a specific pre-computed power on each sub-band. We refer to such a power allocation as a power map . Our offline planning tool computes a robust power map for a given topology, by solving a non-convex, non-linear optimization problem, through simple transformations, based on geometric programming. The power map is computed based solely on the network topology, and it is made available to all BTSs that use it throughout the network operation to perform scheduling using a fast quasi-optimal online algorithm that we propose. We evaluate our planning tool for different homogeneous and heterogeneous networks (HetNets), first in a static setting where scheduling is performed optimally and then in a dynamic setting when scheduling is performed with our online scheduler. Results show that our solution significantly outperforms a classical equal power/fixed frequency reuse scheme in terms of sum-rate, by up to 30% in homogeneous networks and by up to 70% in HetNets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call