Abstract

This study evaluated a method for prostate intensity-modulated radiation therapy (IMRT) based on edge-enhanced (EE) intensity in the presence of intrafraction organ deformation using the data of 37 patients treated with step-and-shoot IMRT. On the assumption that the patient setup error was already accounted for by image guidance, only organ deformation over the treatment course was considered. Once the clinical target volume (CTV), rectum, and bladder were delineated and assigned dose constraints for dose optimization, each voxel in the CTV derived from the DICOM RT-dose grid could have a stochastic dose from the different voxel location according to the probability density function as an organ deformation. The stochastic dose for the CTV was calculated as the mean dose at the location through changing the voxel location randomly 1000 times. In the EE approach, the underdose region in the CTV was delineated and optimized with higher dose constraints that resulted in an edge-enhanced intensity beam to the CTV. This was compared to a planning target volume (PTV) margin (PM) approach in which a CTV to PTV margin equivalent to the magnitude of organ deformation was added to obtain an optimized dose distribution. The total monitor units, number of segments, and conformity index were compared between the two approaches, and the dose based on the organ deformation of the CTV, rectum, and bladder was evaluated. The total monitor units, number of segments, and conformity index were significantly lower with the EE approach than with the PM approach, while maintaining the dose coverage to the CTV with organ deformation. The dose to the rectum and bladder were significantly reduced in the EE approach compared with the PM approach. We conclude that the EE approach is superior to the PM with regard to intrafraction organ deformation.

Highlights

  • Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy are commonly used for the treatment of prostate cancer due to their superior dose conformality to the target and sparing of normal tissues such as the rectum and bladder when compared to three-dimensional (3D) conformal radiotherapy

  • Intrafraction organ deformation can be taken into account by incorporating the probability density function into the treatment planning process to ensure a robust dose distribution

  • The edge-enhanced technique was compared with the planning target volume (PTV)-margin technique with regard to dosimetric and radiobiological parameters

Read more

Summary

Introduction

Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy are commonly used for the treatment of prostate cancer due to their superior dose conformality to the target and sparing of normal tissues such as the rectum and bladder when compared to three-dimensional (3D) conformal radiotherapy. Treatment planners take account of the dose constraints in both the target and normal tissues to ensure a satisfactory dose distribution and clinically relevant dose–volume indices. Even when this is achieved successfully, it may not always be optimal, as described by Roy et al [2]. Several approaches have been proposed for minimizing the dose to normal tissues while ensuring the prescribed dose coverage for the target; these include the individualized margin [3], anisotropic margin [4, 5], and zero-PTV-margin [6] These margin approaches take into consideration the interfraction motion at setup as well as intrafraction organ motion during the irradiation.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call