Abstract

The objective of this paper is to present Genetic Algorithm (GA) and Harmonic Search Algorithm (HSA) based on PID tuning and Model Order Reduction with Balance Truncation (MORBT). This method is used for constructing a second order balanced truncation model order reduction for symmetric linear time invariant third order control systems. These methods are closely related to the proper and improper controllability and observability Gramians and Hankel singular values of descriptor systems. The HS (Harmonic Search) algorithm mimics behaviours of music players in an improvisation process, in order to find a better state of harmony which can be translated into a solution vector in the optimization process. PID (proportional-integral-derivative) controller provides sufficient stability margins and good time responses. It is now possible to design an optimal PID controller with properties of a GA and HSA. In control strategies, like PID controller are successfully designed to control the autonomous underwater vehicle. The elementary focus is to simulate the controller response.

Highlights

  • Autonomous Underwater Vehicle (AUV) refers to an autonomous underwater vehicle equipped with suitable sensors and actuators which enable to navigate through unknown environments while performing certain user specified tasks

  • The Simulation result for AUV control for the PID controller using genetic algorithm (GA) and PID controller using Harmonic Search Algorithm (HSA) is shown in Figure 4 and 5 respectively

  • The cost comparison between the GA and HSA is given in table 6

Read more

Summary

Introduction

AUV refers to an autonomous underwater vehicle equipped with suitable sensors and actuators which enable to navigate through unknown environments while performing certain user specified tasks. AUV’s have 3 degrees of freedom and the subsystem is coupled with strong interaction [1]. The HS algorithm initializes the Harmony Memory (HM) with randomly generated solutions. The parameters that are used in the generation process of a new solution are called Harmony Memory considering Rate (HMCR) and Pitch Adjusting Rate (PAR). This study, another evolutionary in algorithm (harmony search or HS), inspired by music improvisation, is applied to music composition.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.