Abstract
This paper presents the design of a robust proportional integral and derivative (PID) controller for a first-order lag with pure delay (FOLPD) model using particle swarm optimization (PSO)-enabled automated quantitative feedback theory (QFT). The plant model considered here can be approximated as a first-order system with a non-minimum phase (NMP) zero. Synthesis of controller for the FOLPD model via manual graphical technique involved in the QFT method is always a challenging and cumbersome task, because an NMP system stabilizes by a small gain. In this paper, a proposal is being presented to automate the loop-shaping phase in the QFT design method to synthesize a robust controller that can undertake the exact amount of plant uncertainty even in the presence of larger uncertainties than those assumed initially and can ensure a proper trade-off between robust stability and tracking performance specifications over the entire range of design frequencies. In this paper,s the PSO technique has been employed to tune the controller automatically,which can significantly reduce the computational effort compared with manual graphical techniques. It has also been demonstrated that this methodology not only automates loop shaping but also improves design quality and, most usefully, improves performance with optimally tuned PID controller in quantitative manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Systems Science & Control Engineering: An Open Access Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.