Abstract

Phase retrieval with pre-defined optical masks can provide extra constraints and thus achieve improved performance. Recent progress in optimization theory demonstrates the superiority of random masks in enhancing the accuracy of phase retrieval algorithms. However, traditional approaches only focus on the randomness of the masks but ignore their non-bandlimited nature. When using these masks for phase retrieval, the intensity measurements contain many significant high-frequency components that the phase retrieval algorithm cannot take care of and thus leads to degraded performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme that can significantly reduce the high-frequency contents of the masks while fulfilling the randomness requirement. The resulting intensity measurements will contain data concentrated in the mid-frequency band and around zero frequency areas which can be fully utilized in the phase retrieval optimization process. Our experimental results show that the proposed green noise binary masking scheme consistently outperforms the traditional ones when using in binary coded diffraction pattern phase retrieval systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.