Abstract

In this paper, we investigate the problem of personalized ranking from implicit feedback (PRIF). It is a more common scenario (e.g. purchase history, click log and page visitation) in recommender systems. The training data are only binary in these problems, reflecting the users’ actions or inactions. One shortcoming of previous PRIF algorithms is noise sensitivity: outliers in training data might bring significant fluctuations in the training process and lead to inaccuracy of the algorithm. In this paper, we propose two robust PRIF algorithms to solve the noise sensitivity problem of existing PRIF algorithms by using the pairwise sigmoid and pairwise fidelity loss functions. These two pairwise loss functions are flexible and can easily be adopted by popular collaborative filtering models such as the matrix factorization (MF) model and the K-nearest-neighbor (KNN) model. A learning process based on stochastic gradient descent with bootstrap sampling is utilized for the optimization. Experiments are conducted on practical datasets containing noisy data points or outliers. Results demonstrate that the proposed algorithms outperform several state-of-the-art one class collaborative filtering (OCCF) algorithms on both the MF and KNN models over different evaluation metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.