Abstract

A novel perturbation attenuation method is proposed for robust performance of mechanical systems. First, we give a unified view on a class of existing perturbation observers and define the residual perturbation. In terms of the view and the definition, a new perturbation compensator with multiloop structure is developed. It effectively compensates the perturbation (i.e., model uncertainty and external disturbance) to the plant in a hierarchical and recursive fashion. In the multiloop perturbation compensator (MPEC) proposed, as the number of loops increases, the external disturbance condition for system stability is greatly relaxed and the perturbation attenuation performance is gradually enhanced but the robust stability margin on the modeling error becomes more strict. A recursive algorithm for general n-loop case of the MPEC is derived. By combining the developed robust perturbation compensator with a nominal feedback controller, a robust motion controller is synthesized. Experimental results for XY positioner and 2-DOF robot arms demonstrate the excellent robust tracking performance in spite of arbitrary large perturbation inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.