Abstract

This paper presents an approach employing disturbance observers to enhance the performance of inverse-based hysteresis compensation based on the generalized Prandtl–Ishlinskii model in feedback control reference-tracking applications. It is first shown that the error resulting from inexact hysteresis compensation is an L∞-bounded signal. Hence, a disturbance observer (DOB) is designed to cancel its effect and improve the closed loop robust tracking performance in the presence of plant dynamics uncertainty. The design of the DOB makes use of an equivalent internal model-based estimation of exogenous disturbances, where the internal model dynamics is designed to have at least an eigenvalue at the origin. The synthesis is then formulated as an H∞ weighted-sensitivity optimization for static output feedback (SOF) gain of a Luenberger observer. A linearization heuristic is then implemented to solve the bilinear-matrix-inequality (BMI) constrained semidefinite program (SDP) for a (sub)optimal static gain. Simulation results indicate that tracking performance is indeed improved using the combined inversion-based compensation and the DOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.