Abstract

Recently, a scalable approach to system analysis and controller synthesis for homogeneous multi-agent systems with Bernoulli distributed packet loss has been proposed. As a key result of that line of work, it was shown how to obtain upper bounds on the H2-norm that are robust with respect to uncertain interconnection topologies. The main contribution of the current paper is to show that the same upper bounds hold not only for uncertain but also time-varying topologies that are superimposed on the stochastic packet loss. Because the results are formulated in terms of linear matrix inequalities that are independent of the number of agents, multi-agent systems of any size can be analysed efficiently. The applicability of the approach is demonstrated on a numerical first-order consensus example, on which the obtained upper bounds are compared to estimates from Monte-Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.