Abstract

In vision-based surveillance systems, pedestrian recognition and path prediction are critical concerns. Advanced computer vision applications, on the other hand, confront numerous challengesdue to differences in pedestrian postures and scales, backdrops, and occlusion. To tackle these challenges, we present a YOLOv5-based deep learning-based pedestrian recognition and path prediction method. The updated YOLOv5 model was first used to detect pedestrians of various sizes and proportions. The proposed path prediction method is then used to estimate the pedestrian's path based on motion data. The suggested method deals with partial occlusion circumstances to reduce object occlusion-induced progression and loss, and links recognition results with motion attributes. After then, the path prediction algorithm uses motion and directional data to estimate the pedestrian movement's direction. The proposed method outperforms the existing methods, according to the results of the experiments. Finally, we come to a conclusion and look into future study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.