Abstract

A class of networked nonlinear control systems with norm-bounded uncertainties is presented in this paper. The class is represented by Takagi–Sugeno (T-S) fuzzy models with packet processing. The network loop delay is considered either as known delay or random delay. For the former case, we develop conditions that guarantee the robust asymptotic stability and state-feedback stabilization with strict dissipativity and cast the results in linear matrix inequality (LMI) framework. Next employing a probabilistic-based delay partitioning method to deal with random delay, we establish novel LMI criteria for strict dissipative stability analysis and feedback synthesis. The efficacy of the ensuing techniques is demonstrated by numerical solution of typical examples and Mont Carlo simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.