Abstract

AbstractThe aim of this study was to design a constrained robust output feedback control strategy for stabilizing linear systems affected by uncertainties and output perturbations. The input is constrained by a saturation function. A classical Luenberger observer reconstructed the states from output observations. The state feedback control employed the estimated states given by the observer. This work proposed a Barrier Lyapunov Function (BLF) to manage the saturation problem in the control input. Moreover, an extended version of the attractive ellipsoid method (AEM) characterized the zone of convergence due the presence of perturbations in the output. A convex optimization procedure, formulated as a set of matrix inequalities, yielded the control parameters and the region of attraction for the close‐loop system as well as a minimal ultimately bounded set for the system trajectories. Numerical simulations supported the theoretical results formulated in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call