Abstract
We study orbital diamagnetism at zero temperature in (2 + 1)-dimensional Dirac fermions with a short-range interaction which exhibits a quantum phase transition to a charge density wave (CDW) phase. We introduce orbital magnetic fields into spinless Dirac fermions on the π-flux square lattice, and analyze them by using infinite density matrix renormalization group. It is found that the diamagnetism remains intact in the Dirac semimetal regime, while it is monotonically suppressed in the CDW regime. Around the quantum critical point of the CDW phase transition, we find a scaling behavior of the diamagnetism characteristic of the chiral Ising universality class. Besides, the scaling analysis implies that the robust orbital diamagnetism at weak magnetic fields in a Dirac semimetal regime would hold not only in our model but also in other interacting Dirac fermion systems as long as scaling regions are wide enough. The scaling behavior may also be regarded as a quantum, magnetic analogue of the critical Casimir effect which has been widely studied for classical phase transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.