Abstract

The robustness of an atomic fountain interferometer with respect to variations in the initial velocity of the atoms and deviations from the optimal pulse amplitude is examined. We numerically simulate the dynamics of an interferometer in momentum space with a maximum separation of 20ℏk and map out the expected signal contrast depending on the variance of the initial velocity distribution and the value of the laser field amplitude. We show that an excitation scheme based on rapid adiabatic passage significantly enhances the expected signal contrast, compared to the commonly used scheme consisting of a series of π/2 and π pulses. We demonstrate further substantial increase of the robustness by using optimal control theory to identify splitting and swapping pulses that perform well on an ensemble average of pulse amplitudes and velocities. Our results demonstrate the ability of optimal control to significantly enhance future implementations of atomic fountain interferometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.