Abstract

This paper aims to solve the robust iterative learning control (ILC) problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties. A new optimization-based method is proposed to design and analyze adaptive ILC, for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices. It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC, where the boundedness of system trajectories and estimated parameters can be ensured, regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties. Two simulation tests, especially implemented for an injection molding process, demonstrate the effectiveness of our robust optimization-based ILC results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.