Abstract
In this paper, we propose a new uncertainty set for robust models of linear optimization problems. We first study data-free and distribution-free statistical properties of continuous and independent random variables using the Probability Integral Transform. Based on these properties, we construct a new uncertainty set by placing constraints on the order statistics of random variables. We utilize the quantiles of random variables to depict the uncertainties and then adopt the formulation of the assignment problem to develop a tractable formulation for the order statistic uncertainty set. We show that the robust optimization models with the interval uncertainty set, the budget uncertainty set, and the demand uncertainty set can be obtained as special cases of the robust optimization model with the order statistic uncertainty set. Finally, using a robust portfolio construction problem as an example, we show via numerical experiments that the order statistic uncertainty set has better performance than other uncertainty sets when the sample size is small and the correlation between random variables is low.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.