Abstract
In this paper, a novel direct interval robust optimization approach is proposed so that the robust optimal design vectors for structures with interval uncertainties can be achieved. A new concept of interval closeness coefficient is proposed to describe the relative positional relationship between the boundaries of two intervals. Subsequently, the explicit formulae for calculating the four interval closeness coefficients between the boundaries of an interval constraint mechanical performance index and those of its corresponding given interval constant are put forward. Consequently, the 3D violation vectors of different interval constraints can be calculated, and the feasibility of a design vector can be evaluated by its total 3D violation vector of all interval constraints. Finally, various design vectors are directly ranked according to the preferential guidelines considering the robustness of all the mechanical performance indices of uncertain structures, which is realized by integrating the Kriging technique and nested genetic algorithm. Unlike the traditional robust optimization of structures involving interval uncertainties, the proposed method can avoid the complicated model transformation process and ensure the robustness of all the mechanical performance indices of the optimal solution. Two examples are thoroughly investigated, the results of which demonstrate the applicability and advantages of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.