Abstract
Popular problems in robotics and computer vision like simultaneous localization and mapping (SLAM) or structure from motion (SfM) require to solve a least-squares problem that can be effectively represented by factor graphs. The chance to find the global minimum of such problems depends on both the initial guess and the non-linearity of the sensor models. In this paper we propose an approach to determine an approximation of the original problem that has a larger convergence basin. To this end, we employ a divide-and-conquer approach that exploits the structure of the factor graph. Our approach has been validated on real-world and simulated experiments and is able to succeed in finding the global minimum in situations where other state-of-the-art methods fail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.