Abstract

We study the user association problem in the context of dense networks, where standard adaptive algorithms become ineffective. This paper proposes a novel data-driven technique leveraging the theory of robust optimization. The main idea is to predict future traffic fluctuations, and use the predictions to design association maps before the actual arrival of traffic. Although, the actual playout of the map is random due to prediction error, the maps are robustly designed to handle uncertainty, preventing constraint violations, and maximizing the expectation of a convex utility function, which is used to accurately balance base station loads. We propose a generalized iterative algorithm, referred to as GRMA, which is shown to converge to the optimal robust map. The optimal maps have the intriguing property that they jointly optimize the predicted load and the variance of the prediction error. We validate our robust maps in Milano-area traces, with dense coverage and find that we can reduce violations from 25% (inflicted by a baseline adaptive algorithm) down to almost zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.