Abstract
This paper proposes a methodology to generate a robust logistics plan that can mitigate demand uncertainty in humanitarian relief supply chains. More specifically, we apply robust optimization (RO) for dynamically assigning emergency response and evacuation traffic flow problems with time dependent demand uncertainty. This paper studies a Cell Transmission Model (CTM) based system optimum dynamic traffic assignment model. We adopt a min–max criterion and apply an extension of the RO method adjusted to dynamic optimization problems, an affinely adjustable robust counterpart (AARC) approach. Simulation experiments show that the AARC solution provides excellent results when compared to deterministic solution and sampling based stochastic programming solution. General insights of RO and transportation that may have wider applicability in humanitarian relief supply chains are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.