Abstract

Dynamic systems that are subject to fast disturbances, parametrised by a disturbance vector d, undergo bifurcations for some values of the disturbance d. In this work we specifically examine those bifurcations which give rise to system trajectories that leave the domain of attraction of a desired system state. We derive equations which describe the manifold of bifurcation values (that is the manifold of disturbances d which cause the system trajectory to abandon the desired domain of attraction) and the corresponding normal vectors. The system of equations can then be used to find the smallest critical disturbance in physical, biological or other systems, or to robustly optimise design parameters of an engineered system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.