Abstract
In this article, some Karush-Kuhn-Tucker type robust optimality conditions and duality for an uncertain nonsmooth multiobjective fractional semi-infinite programming problem ((UMFP), for short) are established. First, we provide, by combining robust optimization and the robust limiting constraint qualification, robust necessary optimality conditions in terms of Mordukhovich's subdifferentials. Under suitable assumptions on the generalized convexity/the strictly generalized convexity, robust necessary optimality condition becomes robust sufficient optimality condition. Second, we formulate types of Mond-Weir and Wolfe robust dual problem for (UMFP) via the Mordukhovich subdifferentials. Finally, as an application, we establish weak/strong/converse robust duality theorems for the problem (UMFP) and its Mond-Weir and Wolfe types dual problem. Some illustrative examples are also provided for our findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.