Abstract

This paper studies a robust optimal reinsurance problem for an ambiguity-averse insurer, who does not have perfect information in the drift term of insurance process. The objective is to minimize the robust value involving the expected time to reach a given capital level before ruin and a penalization of model ambiguity. By using the techniques of stochastic control theory and exponential transformation, we derive the closed-form expressions of the optimal reinsurance strategy and the associated value function for the risk model with cheap reinsurance. For the non-cheap reinsurance, we prove that there exists a “safe level” such that the optimization problem becomes a trivial one when the initial surplus is below this safe level. Therefore, for this case, we focus on solving the corresponding boundary-value problems when the initial surplus is greater than the safe level, and the value function is obtained explicitly as well. Furthermore, we investigate the influence of model ambiguity in theory. Some properties and numerical examples are also presented to show the impact of model parameters on the optimal results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.